Espaces vectoriels normés

Norme

Exercice 5.1 \(\Delta\)

On note E le \mathbb{R} -espace vectoriel des fonctions continues et bornées de \mathbb{R} dans \mathbb{R} . Pour $f\in E$, on pose $N(f)=\sup_{x\in\mathbb{R}}(\mathrm{e}^{-|x|}|f(x)|)$ et $n(f)=\sup_{x\in\mathbb{R}}((1-\mathrm{e}^{-|x|})|f(x)|).$

- 1) Montrer que N et n sont deux normes sur E.
- 2) Pour tout $k \in \mathbb{N}$, calculer les normes de $f_k : x \mapsto e^{-k|x|}$. Les normes N et n sont-elles équivalentes?

Exercice 5.2 ☆☆

Soit E l'espace vectoriel des fonctions réelles de classe \mathcal{C}^1 sur [0,1] s'annulant en 0. Pour $f \in E$, on pose :

$$n(f) = ||f + f'||_{\infty}$$
 et $N(f) = ||f||_{\infty} + ||f'||_{\infty}$

 $\text{Pour }g\in\mathcal{C}^0([0,1],\mathbb{R})\text{, résoudre }\left\{\begin{array}{ll}f'+f=g\\f(0)=0\end{array}\right. \text{ puis montrer que }n\text{ et }N\text{ sont deux normes équivalentes sur }E.$

Exercice 5.3 \$\price \tag{\tag{\tag{2}}}

Soit E l'espace vectoriel des suites réelles bornées de premier terme nul. Pour $u=(u_n)_{n\in\mathbb{N}}\in E$, on pose :

$$||u||_{\infty} = \sup_{n \in \mathbb{N}} |u_n|$$
 et $||u||_1 = \sup_{n \in \mathbb{N}} |u_{n+1} - u_n|$

Montrer que $\|\cdot\|_{\infty}$ et $\|\cdot\|_1$ sont deux normes sur E et les comparer.

Exercice 5.4 🖈

Montrer que N, définie par $N(f) = \sqrt{f(0)^2 + \int_0^1 f'(t)^2 dt}$, est une norme sur $\mathcal{C}^1([0,1],\mathbb{R})$ et la comparer à $\|\cdot\|_{\infty}$.

Exercice 5.5 🌣

Pour
$$P(X)=\sum\limits_{k=0}^{\infty}a_kX^k\in\mathbb{R}[X]$$
, on pose $N_1(P)=\sum\limits_{k=0}^{\infty}|a_k|$ et $N_2(P)=\int_0^1|P(t)|\mathrm{d}t$. Montrer que N_1 et N_2 définissent deux normes sur $\mathbb{R}[X]$, que $N_2\leqslant N_1$, mais qu'elles ne sont pas équivalentes.

Exercice 5.6 ☆ ☆ Norme subordonnée

On munit $E = \mathcal{M}_{n,1}(\mathbb{R})$ de N_{∞} et on note S la sphère unité de (E, N_{∞}) .

- $\textbf{1)} \ \ \mathsf{Soit} \ A \in \mathcal{M}_n(\mathbb{R}). \ \ \mathsf{Justifier} \ \ \mathsf{l'existence} \ \ \mathsf{du} \ \ \mathsf{r\'eel} \ |||A||| = \sup_{X \in E \smallsetminus \{0\}} \frac{N_\infty(AX)}{N_\infty(X)} \ \ \mathsf{et} \ \ \mathsf{montrer} \ \ \mathsf{que} \ |||A||| = \max_{X \in S} N_\infty(AX).$
- **2)** Montrer que $|||\cdot|||$ est une norme sur $\mathcal{M}_n(\mathbb{R})$ et que :

$$\forall A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{R}), \qquad |||A||| = \max_{1 \le i \le n} \sum_{j=1}^n |a_{i,j}|$$

Convergence des suites

Exercice 5.7 🌣

Dans l'espace vectoriel normé $\mathcal{M}_3(\mathbb{R})$, on considère $A = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 3 & 1 \\ 4 & -4 & -1 \end{pmatrix}$.

Calculer $(A-I_3)^2$, puis montrer que la suite $(S_n(A))_{n\geqslant 0}$, définie par $S_n(A)=\sum\limits_{k=0}^n\frac{1}{k!}A^k$, converge et calculer sa limite.

Exercice 5.8 **

 $E=\mathcal{C}^0([0,1],\mathbb{R}) \text{ est muni des normes } \|\cdot\|_{\infty} \text{ et } \|\cdot\|_1: f\mapsto \int_0^1 |f|.$ Etudier la convergence de la suite $(f_n)_{n\geqslant 0}$ définie par $f_n(x)=nx^n(1-x)$ dans $(E,\|\cdot\|_1)$ et dans $(E,\|\cdot\|_\infty)$.

Exercice 5.9 🖈

Dans $\mathcal{M}_n(\mathbb{R})$ on considère les sous-espaces vectoriels $\mathcal{S}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$ constitués respectivement des matrices symétriques et des matrices antisymétriques.

- 1) Montrer que $\mathcal{S}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$ sont fermés dans $\mathcal{M}_n(\mathbb{R})$.
- 2) Soit $A \in \mathcal{A}_n(\mathbb{R})$ telle que la suite (A^k) converge. Déterminer sa limite.

Exercice 5.10 \(\phi\)

Soit $A \in \mathcal{M}_n(\mathbb{R})$ diagonalisable. Montrer l'équivalence :

la suite
$$(A^k)_{k\geqslant 0}$$
 converge dans $\mathcal{M}_n(\mathbb{R}) \iff \operatorname{Sp}(A) \subset]-1,1]$

On note alors $B = \lim_{k \to +\infty} A^k.$ Montrer que B est la matrice d'un projecteur.

Topologie

Exercice 5.11 ☆ MATRICE STOCHASTIQUE

 $A=(a_{i,j})\in\mathcal{M}_n(\mathbb{R}) \text{ est dite stochastique si, pour tout } (i,j)\in \llbracket 1,n\rrbracket^2,\ a_{i,j}\geqslant 0 \text{ et, pour tout } i\in \llbracket 1,n\rrbracket,\ \sum\limits_{i=1}^n a_{i,j}=1.$

Montrer que le sous-ensemble $\mathcal S$ des matrices stochastiques de $\mathcal M_n(\mathbb R)$ est fermé, borné, convexe et d'intérieur vide.

Exercice 5.12 \(\phi\)

Les ensembles suivants sont-ils ouverts, fermés, bornés?

$$A = \{(x,y) \in \mathbb{R}^2, \ xy = 1\} \qquad \qquad B = \{(x,y) \in \mathbb{R}^2, \ x^2 + xy + y^2 < 1\} \qquad \qquad C = \{z \in \mathbb{C}, \ \operatorname{Re}(z^2) \leqslant 1\}$$

Exercice 5.13 🌣

Montrer que le sous-ensemble de $\mathbb{R}_n[X]$ constitué des polynômes unitaires est fermé dans $\mathbb{R}_n[X]$.

Exercice 5.14 ☆☆ Borne inférieure sur un fermé

 $E=\mathcal{C}^0([0,1],\mathbb{R})$ est muni de la norme de la convergence uniforme $\|\cdot\|_\infty$ et $F=\{f\in E,\ f(0)=0\ \mathrm{et}\ \int_0^1 f\geqslant 1\}$. Montrer que F est un fermé de E et que, pour tout $f\in F,\ \|f\|_\infty\geqslant 1$. Puis, montrer que $\inf_{f\in F}\|f\|_\infty=1$.

Exercice 5.15 \(\phi\)

Soit G le graphe de $f: x \mapsto \sin(\frac{1}{x})$ sur $]0, +\infty[$. Montrer que, pour tout $y \in [-1, 1]$, le point (0, y) est adhérent à G.

Exercice 5.16 ☆☆

Soient E un espace vectoriel normé et A une partie non vide de E.

Pour tout $x \in E$, on pose $d(x, A) = \inf_{a \in A} \|x - a\|$.

- 1) Montrer que, pour tout x de E, on a $d(x, A) = 0 \iff x$ est adhérent à A.
- **2)** Montrer que $x \mapsto d(x, A)$ est 1-lipschitzienne.

Exercice 5.17 🖈

 $(E,(\cdot|\cdot))$ est un espace euclidien. Montrer que $F=\{(u,v)\in E^2,\ u\ {
m et}\ v\ {
m non\ colineaires}\}$ est un ouvert de $E\times E$.

Exercice 5.18 ☆☆☆ Théorème de Cayley-Hamilton

Pour $p \in \mathbb{N}^*$, on pose $E = \mathcal{M}_p(\mathbb{C})$ et F le sous-ensemble de E constitué des matrices diagonalisables.

- 1) Calculer $\chi_A(A)$ lorsque $A \in E$ est diagonale, puis lorsque $A \in F$.
- **2)** Montrer que $\overline{F} = E$.
- 3) Démontrer le théorème de Cayley-Hamilton.

Limite et continuité

Exercice 5.19 \rightleftharpoons Limite en (0,0)

Etudier l'existence et calculer l'éventuelle limite en (0,0) des applications définies sur $\mathbb{R}^2 \setminus \{(0,0)\}$ suivantes :

$$f:(x,y) \mapsto \frac{\sin(x^2)}{|x|+|y|} \qquad \qquad g:(x,y) \mapsto \frac{x^2-y^2}{x^2+y^2} \qquad \qquad h:(x,y) \mapsto \frac{x^2y}{x^4+y^2}$$

$$g:(x,y)\mapsto \frac{x^2-y^2}{x^2+y^2}$$

$$h:(x,y)\mapsto \frac{x^2y}{x^4+y^2}$$

Exercice 5.20 \(\frac{1}{2}\)

Soit $f: \mathbb{R} \to \mathbb{R}^2$ continue en 0 telle que f(0) = (0,1) et, pour tout $t \in \mathbb{R}, \ f(t) = f\left(\frac{t}{2}\right) + \left(\frac{t}{2}, -\frac{3t^2}{(t^2+1)(t^2+4)}\right)$.

Montrer que l'application $g: \mathbb{R} \to \mathbb{R}^2$ définie par $g(t) = f(t) - (t, \frac{1}{t^2 + 1})$ est constante et en déduire f.

Exercice 5.21 \rightleftharpoons Deux normes sur $\mathbb{R}[X]$

On considère sur $E=\mathbb{R}[X]$ les normes N_1 et N_2 ainsi que l'application arphi définies par :

$$\forall P \in E, \quad N_1(P) = \sup_{0 \le t \le 1} |P(t)| \qquad N_2(P) = \sup_{1 \le t \le 2} |P(t)| \qquad \varphi(P) = P(0)$$

- 1) Montrer que φ définit une application continue de (E, N_1) vers \mathbb{R} , mais discontinue de (E, N_2) vers \mathbb{R} . (On pourra utiliser la suite définie par $P_n(t) = (1 - t/2)^n$).
- **2)** Montrer que $\operatorname{Ker} \varphi$ est fermé dans (E, N_1) mais pas dans (E, N_2) .

Exercice 5.22 ★ APPLICATION CONTRACTANTE

Les applications suivantes sont-elles contractantes, c'est-à-dire lipschitzienne de rapport k < 1?

$$f: x \mapsto \ln(1+x/2)$$
 sur $[1, +\infty[$

$$g: x \mapsto \arctan(x) \quad \text{sur } \mathbb{R}$$

Exercice 5.23 \(\phi\)

 $E = \mathbb{R}_n[X]$ est muni d'une norme $\|\cdot\|$ et 0 < a < b. Montrer qu'il existe m > 0 tel que :

$$\forall P \in E, \quad a \leqslant ||P|| \leqslant b \Longrightarrow \sum_{j=0}^{n} (P(j))^{2} \geqslant m$$

Exercice 5.24 ☆☆ GROUPE ORTHOGONAL

Dans $E = \mathcal{M}_n(\mathbb{R})$, on considère $O(n) = \{A \in E, A^{\top}A = I_n\}$.

Montrer que O(n) et un fermé borné de E, puis que l'application tr admet des extrema sur O(n) et les calculer.

Exercice 5.25 ☆☆

Soient $E = \mathcal{C}^0([-1,1],\mathbb{R})$ muni de la norme de la convergence uniforme $\|\cdot\|_{\infty}$ et $L: \left\{ \begin{array}{ccc} E & \to & \mathbb{R} \\ f & \mapsto & \int_{-1}^1 f(t) \sin(\pi t) \mathrm{d}t \end{array} \right.$

Montrer que L est continue et déterminer le plus petit réel k tel que, pour tout $f \in E, \ |L(f)| \leqslant k\|$

Exercice 5.26 ☆☆ POINT FIXE

Soient E un espace vectoriel normé de dimension finie, K un fermé borné non vide de E et $f:K\to K$ vérifiant :

$$\forall (x,y) \in K^2, \quad x \neq y \Longrightarrow ||f(x) - f(y)|| < ||x - y||$$

Montrer que f admet un unique point fixe. $(On\ pourra\ considérer\ \alpha \inf_{x\in K}\|f(x)-x\|)$