Intégration

Intégration sur un segment et primitive

Exercice 4.1 🖈

Pour tout $n \in \mathbb{N}$, on pose $u_n = \int_0^1 \frac{x^n}{\sqrt{1+x}} dx$.

Montrer que la suite (u_n) décroît et converge vers 0, puis que $u_n \sim \frac{1}{n\sqrt{2}}$

Exercice 4.2 \(\phi\)

Calculer les intégrales suivantes :

$$I_1 = \int_1^5 \frac{\sqrt{x-1}}{x+1} \mathrm{d}x$$

$$I_2 = \int_1^2 \frac{x \ln x}{(1+x^2)^2} \mathrm{d}x$$

$$I_1 = \int_1^5 \frac{\sqrt{x-1}}{x+1} dx \qquad I_2 = \int_1^2 \frac{x \ln x}{(1+x^2)^2} dx \qquad I_3 = \int_0^{\pi/4} \cos x \ln(\cos x) dx$$

Exercice 4.3 🖈

Déterrminer une primitive, sur un domaine réel à préciser, de chacune des fonctions suivantes :

$$f: x \mapsto x \operatorname{sh}(x) \sin(x)$$

$$f: x \mapsto x \operatorname{sh}(x) \sin(x)$$
 $g: x \mapsto \sqrt{x^2 + 4x - 5}$ $h: x \mapsto \frac{1 - \cos(\frac{x}{3})}{\sin(\frac{x}{3})}$

$$h: x \mapsto \frac{1-\cos(\frac{x}{3})}{\sin(\frac{x}{2})}$$

Exercice 4.4 🖈

Calculer $\lim_{t \to 0^+} \frac{\mathrm{e}^t}{\arcsin t} - \frac{1}{t}$, puis $\lim_{x \to 0^+} \int_x^{2x} \frac{\mathrm{e}^t \mathrm{d}t}{\arcsin t}$.

Exercice 4.5 ☆☆

Montrer que, pour $x \in \mathbb{R}, \ \int_0^{\sin^2 x} \arcsin \sqrt{t} \, \mathrm{d}t + \int_0^{\cos^2 x} \arccos \sqrt{t} \, \mathrm{d}t = \frac{\pi}{4}.$

Exercice 4.6 \(\phi\)

Déterminer les fonctions f continues sur $\mathbb R$ telles que, pour tout $x \in \mathbb R$ et tout a > 0, on ait $f(x) = \frac{1}{2a} \int_{x-a}^{x+a} f(t) \mathrm{d}t$.

Exercice 4.7 🌣

Déterminer un équivalent de $\sum_{k=1}^n \frac{1}{k^2+nk+n^2}$ lorsque $n \to +\infty$.

Fonctions continues par morceaux

Exercice 4.8 🖈

Montrer que la fonction $F:x\mapsto \int_0^x \left\lfloor t+\frac{1}{2} \right\rfloor \mathrm{d}t$ est continue sur $\mathbb R$ et l'expliciter.

Montrer que la fonction $f: t \mapsto t\lfloor 1/t \rfloor$ est continue par morceaux sur]0,1], puis que $\int_0^1 f(t) dt$ converge et la calculer.

Exercice 4.10 ☆ ☆ Lemme de Riemann-Lebesgue

Soit f une fonction définie sur un segment [a,b] à valeurs dans \mathbb{C} .

- 1) Montrer que $\lim_{n\to +\infty} \int_a^b f(t) \mathrm{e}^{int} \mathrm{d}t = 0$, lorsque f est de classe \mathcal{C}^1 sur [a,b].
- 2) Montrer que $\lim_{n\to +\infty} \int_a^b f(t) \mathrm{e}^{int} \mathrm{d}t = 0$, lorsque f est en escalier sur [a,b].

Le lemme de Riemann-Lebesgue affirme que le résultat subsiste lorsque f est seulement continue par morceaux sur [a,b].

Convergence et calcul

Exercice 4.11 \(\frac{1}{2}\)

 α et β étant des paramètres réels, donner la nature des intégrales suivantes :

1)
$$\int_0^1 \frac{e^x - 1}{x} dx$$

4)
$$\int_{2}^{+\infty} \frac{\mathrm{d}x}{(\ln x)^{\ln x}}$$

7)
$$\int_0^{+\infty} x^{\alpha} e^{-\sqrt{x}} dx$$

10)
$$\int_0^{+\infty} \frac{dx}{e^x - \cos x}$$

1)
$$\int_0^{\infty} \frac{\sin^2 x}{x} dx$$
2)
$$\int_0^{+\infty} \frac{\sin^2 x}{x^2} dx$$

4)
$$\int_{2}^{+\infty} \frac{\mathrm{d}x}{(\ln x)^{\ln x}}$$
7) $\int_{0}^{+\infty} x^{\alpha} \mathrm{e}^{-\sqrt{x}} \mathrm{d}x$
5) $\int_{1}^{+\infty} \left(\mathrm{e} - \left(1 + \frac{1}{x} \right)^{x} \right) \mathrm{d}x$
8) $\int_{0}^{+\infty} \ln(x) \mathrm{e}^{-x} \mathrm{d}x$
6) $\int_{1}^{+\infty} \frac{\mathrm{d}x}{(x-1)^{\alpha}(x+1)^{\beta}}$
9) $\int_{0}^{+\infty} \ln\left(\frac{\mathrm{sh}\,x}{\mathrm{ch}\,x}\right) \mathrm{d}x$

8)
$$\int_0^{+\infty} \ln(x) e^{-x} dx$$

11)
$$\int_0^1 \frac{x \ln x}{(1-x^2)^{3/2}} \mathrm{d}x$$

$$3) \int_0^{+\infty} \frac{e^{-x}}{\sqrt{x}} dx$$

6)
$$\int_{1}^{+\infty} \frac{\mathrm{d}x}{(x-1)^{\alpha}(x+1)^{\beta}}$$

9)
$$\int_0^{+\infty} \ln\left(\frac{\sin x}{\cot x}\right) dx$$

12)
$$\int_0^{+\infty} \sin^2(1/x) \, dx$$

Exercice 4.12 ☆☆

Soient $n \in \mathbb{N}$ et a < b. Montrer que les intégrales suivantes convergent et les calculer :

1)
$$\int_0^1 (\ln x)^n dx$$

3)
$$\int_0^{+\infty} \ln\left(1 + \frac{1}{x^2}\right) dx$$

$$5) \int_{-\infty}^{+\infty} e^{x - e^x} dx$$

7)
$$\int_0^{+\infty} t^n e^{-t} \sin(t) dt$$

2)
$$\int_{-\infty}^{+\infty} \frac{\mathrm{d}x}{(1+x^2)^{3/2}}$$

4)
$$\int_0^{+\infty} \frac{1}{\sqrt{e^x + 1}} dx$$

3)
$$\int_0^{+\infty} \ln\left(1 + \frac{1}{x^2}\right) dx$$
 5) $\int_{-\infty}^{+\infty} e^{x - e^x} dx$ **4)** $\int_0^{+\infty} \frac{1}{\sqrt{e^x + 1}} dx$ **6)** $\int_a^b \frac{dx}{\sqrt{(x - a)(b - x)}}$

8)
$$\int_1^{+\infty} \left(\frac{1}{x} - \arcsin \frac{1}{x}\right) dx$$

Intégrabilité

Exercice 4.13 🖈

Etudier la convergence absolue et la convergence des intégrales suivantes :

1)
$$\int_1^{+\infty} \frac{\sin t}{t^{3/2}} dt$$

3)
$$\int_0^{+\infty} \frac{\sqrt{t} \sin(\frac{1}{t^2})}{\ln(1+t)} dt$$

4) $\int_0^{+\infty} \frac{te^{it}}{i-t^3} dt$

$$5) \int_1^{+\infty} \frac{e^{it}}{t} dt$$

7)
$$\int_0^{+\infty} \frac{(-1)^{\lfloor t \rfloor}}{1+t} dt$$

$$2) \int_0^{\pi/2} \cos\left(\frac{1}{t}\right) dt$$

4)
$$\int_0^{+\infty} \frac{t e^{it}}{i - t^3} dt$$

6)
$$\int_{2/\pi}^{+\infty} \ln \cos(\frac{1}{t}) dt$$

8)
$$\int_0^{+\infty} \sin(t^2) dt$$

Exercice 4.14 ☆☆

- 1) En minorant $f: x \mapsto \frac{\sin^2 x}{x}$ sur des intervalles bien choisis, montrer que f n'est pas intégrable sur $[1, +\infty[$.
- 2) À l'aide d'une intégration par parties, montrer que $\int_1^{+\infty} \frac{\sin x}{x^{\alpha}} dx$ converge pour tout $\alpha > 0$, alors que $x \to \frac{\sin x}{x^{\alpha}}$ est intégrable sur $[1, +\infty[$ si, et seulement si, $\alpha > 1$.
- **3)** Etudier la nature des intégrales $\int_1^{+\infty} \frac{\sin x}{\sqrt{x} + \sin x} dx$ et $\int_1^{+\infty} \frac{\sin x}{\sqrt{x} + \cos x} dx$.

Exercice 4.15 ☆☆ Intégrale de Dirichlet

- 1) Montrer que, pour tout $n \in \mathbb{N}$, les intégrales $I_n = \int_0^{\pi/2} \frac{\sin[(2n+1)t]}{\sin t} dt$ et $J_n = \int_0^{\pi/2} \frac{\sin[(2n+1)t]}{t} dt$ existent.
- 2) Montrer que la suite (I_n) est constante et calculer $\lim_{n\to +\infty}I_n-J_n$. (On pourra utiliser le résultat de l'exercice 4.10)
- 3) En déduire la convergence et la valeur de $\int_0^{+\infty} \frac{\sin t}{t} dt$.

Exercice 4.16 ☆☆

- 1) Montrer que l'intégrale $\int_0^{+\infty} \frac{\sin^3 t}{t^2} dt$ converge.
- 2) Montrer que, pour tout x > 0, $\int_x^{+\infty} \frac{\sin^3 t}{t^2} dt = \frac{3}{4} \int_x^{3x} \frac{\sin t}{t^2} dt$.
- 3) En déduire la valeur de l'intégrale $\int_0^{+\infty} \frac{\sin^3 t}{t^2} \mathrm{d}t$

Exercice 4.17 ☆☆☆

Soit $f: \mathbb{R}_+ \to \mathbb{R}$ de classe C^2 telle que f et f'' soient intégrables sur \mathbb{R}_+ .

- 1) Montrer que $f'(x) \xrightarrow[x \to +\infty]{} 0$ et $f(x) \xrightarrow[x \to +\infty]{} 0$.
- 2) Etudier les séries $\sum f(n)$ et $\sum f'(n)$.