Intégrales à paramètre

Suite et série d'intégrales

Exercice 7.1 \(\phi\)

Déterminer la limite des suites de terme général : $I_n = \int_0^{+\infty} \arctan(nx) \mathrm{e}^{-x^n} \mathrm{d}x \qquad \qquad J_n = \int_0^{+\infty} \frac{n \sin(t/n)}{t(1+t^2)} \mathrm{d}t \qquad \qquad K_n = \int_0^{+\infty} \frac{x^n}{x^{2n}+1} \mathrm{d}x \qquad \qquad L_n = \int_0^n x \left(1 - \frac{x}{n}\right)^n \mathrm{d}x$

$$I_n = \int_0^{+\infty} \arctan(nx) e^{-x^n} dx$$

$$J_n = \int_0^{+\infty} \frac{n \sin(t/n)}{t(1+t^2)} dt$$

$$K_n = \int_0^{+\infty} \frac{x^n}{x^{2n+1}} \mathrm{d}x$$

$$L_n = \int_0^n x \left(1 - \frac{x}{n}\right)^n \mathrm{d}x$$

Exercice 7.2 \(\phi\)

Soient p et q deux réels strictement positifs.

Pour $x \in [0,1[$, rappeler la valeur de la somme $\sum_{n=0}^{+\infty} (-x^q)^n$, puis montrer que $\int_0^1 \frac{x^{p-1}}{1+x^q} dx = \sum_{n=0}^{+\infty} \frac{(-1)^n}{nq+p}$.

Exercice 7.3 🖈

Montrer que, pour tout $\alpha>0$, on a $\int_1^{+\infty} \frac{1-\mathrm{e}^{-x/n}}{x^{\alpha+2}} \mathrm{d}x \underset{n \to +\infty}{\sim} \frac{1}{n\alpha}$

Exercice 7.4 🖈

Montrer que $S: x \mapsto \sum_{n=1}^{+\infty} \frac{(-1)^n}{(n+x)^2}$ est intégrable sur \mathbb{R}_+ et que $\int_0^{+\infty} S(x) \mathrm{d}x = \sum_{n=1}^{+\infty} \frac{(-1)^n}{n}$.

Exercice 7.5 🌣

Montrer que $S: x \mapsto \sum_{r=1}^{+\infty} \frac{1}{n\sqrt{1+nx}}$ est intégrable sur]0,1] et que $\int_0^1 S(x) \mathrm{d}x = \sum_{r=1}^{+\infty} \frac{2}{n(1+\sqrt{1+n})}$

Exercice 7.6 \(\dagger

Montrer que $S: x \mapsto \sum_{n=1}^{+\infty} e^{-x} \cos(nx) \left(\frac{1}{n^2} + \frac{1}{n^4}\right)$ est intégrable sur \mathbb{R}_+ et que $\int_0^{+\infty} S(x) dx = \sum_{n=1}^{+\infty} \frac{1}{n^4}$.

Exercice 7.7 ☆☆

Montrer que $\int_0^{+\infty} \frac{\sin t}{e^t - 1} dt = \sum_{r=1}^{+\infty} \frac{1}{n^2 + 1}$.

Exercice 7.8 ☆☆☆ Formules de Gauss et de Weierstrass

Soit x>0. Montrer que, $\int_0^n \left(1-\frac{t}{n}\right)^n t^{x-1} \mathrm{d}t \xrightarrow[n \to +\infty]{} \Gamma(x) = \int_0^{+\infty} t^{x-1} \mathrm{e}^{-t} \mathrm{d}t$ et en déduire (γ étant la constante d'Euler) :

$$\Gamma(x) = \lim_{n \to +\infty} \frac{n^x n!}{x(x+1) \cdots (x+n)} \qquad \text{et} \qquad \frac{1}{\Gamma(x)} = x \mathrm{e}^{\gamma x} \lim_{n \to +\infty} \prod_{k=1}^n \left(1 + \frac{x}{k}\right) \mathrm{e}^{-x/k}$$

Intégrale fonction d'un paramètre

Exercice 7.9 \(\frac{1}{2}\)

On rappelle que $\int_{-\infty}^{+\infty} \mathrm{e}^{-t^2} \mathrm{d}t = \sqrt{\pi}$ et on considère la fonction $f: x \mapsto \int_{-\infty}^{+\infty} \mathrm{e}^{-2i\pi x t - \frac{t^2}{2}} \mathrm{d}t$. Montrer que f est de classe \mathcal{C}^1 sur \mathbb{R} et montrer que, pour tout $x \in \mathbb{R}$, $f'(x) = -4\pi^2 x f(x)$. En déduire une expression simple de f.

Exercice 7.10 \(\phi\)

Montrer que la fonction $F: x \mapsto \int_1^{+\infty} \frac{(\ln t)^x}{(t-1)\sqrt{t}} dt$ est continue sur son domaine de définition.

Exercice 7.11 🖈

- 1) Montrer que la fonction $f: x \mapsto \int_0^{+\infty} \frac{\arctan(tx)}{1+t^2} dt$ est continue sur \mathbb{R} , impaire et calculer f(1) et $\lim_{x \to +\infty} f(x)$.
- 2) Montrer que f est de classe \mathcal{C}^1 sur \mathbb{R}_+^* , calculer f'(1) et tracer le graphe de f.

Exercice 7.12 🌣

- 1) Montrer que $F: x \mapsto \int_0^{\pi/2} \frac{\arctan(x \sin \theta)}{\sin \theta} d\theta$ continue sur \mathbb{R} .
- 2) Montrer que F est de classe \mathcal{C}^1 sur \mathbb{R} et calculer F'. (On pourra utiliser le changement de variable $t=\tan\theta$)
- **3)** En déduire que $F(x) = \frac{\pi}{2} \ln(x + \sqrt{x^2 + 1})$.

Exercice 7.13 ☆☆ FONCTION GAMMA D'EULER

Pour x réel convenable, on définit $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$.

- 1) Déterminer le domaine de définition I de la fonction Γ . Montrer que, pour tout x>0, $\Gamma(x+1)=x\Gamma(x)$ et en déduire $\Gamma(n)$, pour tout $n\in\mathbb{N}^*$.
- 2) Montrer que Γ est continue sur \mathbb{R}_+^* et en donner un équivalent en 0^+ .
- 3) Montrer que Γ est de classe \mathcal{C}^{∞} sur \mathbb{R}_{+}^{*} et que Γ' est strictement croissante et s'annule en unique point $\alpha \in]1,2[$.
- 4) Déterminer les variations et tracer l'allure de la courbe de Γ .

Exercice 7.14 ☆ ☆ FONCTION GAMMA D'EULER (BIS)

- 1) On pose $g = \ln \circ \Gamma$. Montrer que la fonction Γ est logarithmiquement convexe, c'est-à-dire que g' est croissante.
- 2) Déterminer un équivalent de la fonction $G: x \mapsto \int_x^{x+1} g(t) dt$ en $+\infty$.
- 3) En déduire un équivalent de g en $+\infty$.

Exercice 7.15 ☆☆ Théorème de Fubini

Soient [a,b] et [c,d] deux segments de \mathbb{R} et $f:[a,b]\times[c,d]\to\mathbb{R}$ une fonction continue, et on pose :

$$\forall (x,t) \in [a,b] \times [c,d], \quad \varphi(x,t) = \int_a^x f(u,t) du$$

- 1) Montrer que, pour tout $x \in [a, b]$, la fonction $t \mapsto \varphi(x, t)$ est continue sur [c, d].
- **2)** On définit alors, pour tout $x \in [a,b], \ \psi(x) = \int_c^d \varphi(x,t) dt$. Montrer que la fonction ψ est de classe \mathcal{C}^1 sur [a,b].
- **3)** En déduire le théorème de Fubini : $\int_a^b \left(\int_c^d f(x,t) dt \right) dx = \int_c^d \left(\int_a^b f(x,t) dx \right) dt$
- **4)** Pour $x \in [0,1]$, calculer $\int_0^1 \frac{x}{1+xt} dt$, puis $I = \int_0^1 \frac{\ln(1+x)}{1+x^2} dx$.

Exercice 7.16 ☆☆☆

Pour $(x,y) \in]1,+\infty[^2$, calculer $f(x,y)=\int_0^\pi \ln\left(\frac{x-\cos t}{y-\cos t}\right)\mathrm{d}t.$ (On pourra utiliser le changement de variable $\tan(t/2)=u$)

Exercice 7.17 ☆☆☆

Soit $f:[0,1]\to\mathbb{R}_+^*$ une fonction continue. Etudier les limites de $x\mapsto \left(\int_0^1 [f(t)]^x\mathrm{d}t\right)^{1/x}$ en 0^+ et $+\infty$.

Exercice 7.18 ☆☆☆ CONVOLUTION

On considère l'espace préhilbertien $E=L^2_c(\mathbb{R},\mathbb{R})$ muni de son produit scalaire usuel et de la norme associée notée $\|\cdot\|_2$. Soient $f,g\in E$ et $f*g:x\mapsto \int_{-\infty}^{+\infty}f(x-y)g(y)\mathrm{d}y$.

- 1) Montrer que f * g est bien définie sur \mathbb{R} et que $||f * g||_{\infty} \leq ||f||_2 ||g||_2$.
- 2) Construire une suite (f_n) de fonctions continues sur $\mathbb R$, nulles en dehors d'un segment, telles que $\lim_{n \to +\infty} \|f f_n\|_2 = 0$.
- **3)** Montrer que f * g tend vers 0 en $\pm \infty$.